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Abstract. We study the ground-state energy of a large polaron in a quantum dot. The electron
is treated as trapped in an anisotropic parabolic box while the coupling to bulk LO phonons
is considered. An upper bound to the ground-state energy of the polaron is obtained using the
Fock approximation of Matz and Burkey. With this treatment, we obtain variational results that
are good to describe weak or strong electron–phonon coupling as well as the isotropic and the
one- and two-dimensional confinement limits. The usual asymptotic limits are found for all of
these cases. Numerical calculations carried out in order to study the validity of each of these
limits as a function of the degree of anisotropy are presented. Also we discuss the effect that
the anisotropy and the strength of the confining potential have on the self-energy of the polaron.
We find that an anisotropic confinement is more effective as regards increasing the self-energy
of the polaron than an isotropic confinement.

1. Introduction

A polaron results from the interaction between a carrier and the phonon excitations in a polar
crystal. When its size is much larger than the lattice parameter, we have a large polaron.
It is described by the Fröhlich Hamiltonian, which is based on the continuum and the
effective-mass approximations [1]. The development of new growth techniques for epitaxial
layers and nanometric methods enables the fabrication of quantum wells (‘two-dimensional’
structures), quantum wires (‘one-dimensional’ structures), and even quantum dots (‘zero-
dimensional’ structures) in polar semiconductors to be achieved. This confinement of the
carrier motion modifies the properties which are observed for three-dimensional materials
[2]. It is of great interest to study the effect of confinement on the polaron properties in
such structures in order to understand their electronic transport and optical properties.

Several studies have already been carried out on polarons in quantum dots. Zhu
and Gu investigated a square dot-type confining potential; they dealt only with the case
of weak coupling, using a perturbative method, and they stressed the importance of the
phonon confinement in this case [3]. Kliminet al treated the bulk and interface vibrational
modes and their respective contributions to the polaron effects for spherical quantum dots:
the ground-state energy and the effective mass were obtained for weak coupling, using
perturbation theory [4].

On the other hand, the harmonic confining potential model is of interest because it
enables us to derive analytical results. It also makes it possible to avoid the difficulty
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of separating bulk and interface vibrations, since the interaction with interface phonons is
ignored because of the absence of an abrupt interface [4]. This model can describe smooth
interfaces and the consideration of just bulk phonons is a good first approximation for large
dots or for dots whose two constituents have similar dielectric properties. This model was
previously used by Yıldırım and Erc¸elebi [5, 6]. These authors developed two different
approaches to tackle the weak- and strong-coupling limits separately. In the case of strong
coupling, they rely on the Pekar formalism [6]; their variational model gives the self-energy
and the effective mass of the polaron in both the two- and three-dimensional strong-coupling
cases. For weak coupling [5], they use the second-order Rayleigh–Schrödinger perturbation
theory (RSPT). Mukhopadhyay and Chatterjee [7] point out that this second-order RSPT
correction to the ground-state polaron energy can be written as a simple expression involving
only gamma functions. In reference [8], polaron states (the ground state and excited states)
in a two-dimensional harmonic quantum dot are investigated, using again the second-order
perturbation theory. The numerical results lead to the conclusion that there are increased
polaronic effects in small quantum dots.

In this paper we study a polaron in a quantum dot: the electron is trapped in an
anisotropic parabolic potential and only the coupling to the bulk LO phonons is taken into
account. The main advantage of our formalism is that it gives the self-energy of the polaron,
in a unified way, for both the strong- and weak-coupling limits and for the one-dimensional
(1D), two-dimensional (2D) and three-dimensional (3D) confinements. It also provides us
with the possibility of investigating all of the intermediate cases. As a first step, in section 2,
we present the Fröhlich Hamiltonian and the Fock approximation of Matz and Burkey [9]
applied to the present case. We discuss the model used to describe the confined polaron.
In section 3, we derive the self-energy of the polaron and the corresponding asymptotic
behaviours. Finally we present the numerical results in section 4.

2. The formalism

To describe a polaron in a parabolic quantum well, the effective-mass approximation is used
for the electron. The lattice, described in the framework of the harmonic approximation,
is considered as a continuum. Periodic boundary conditions are chosen over a cube of
volumeV . The resulting Hamiltonian is written (in dimensionless form) as the sum of the
free-particle Hamiltonians and of their interaction [1]:

H = H0+Hint (1)

H0 = p̂2+
∑
k

a
†
kak + V (r) (2)

Hint =
∑
k

(Vkakeik·r + V ∗k a†ke−ik·r) (3)

whereV (r) is the confining potential anda†k, ak are the annihilation and creation operators
for a LO phonon of wave vectork. Also,

Vk = − i

k

(
4παr3

0

V

)1/2

(4)

α =
(

e2

2r0 h̄ωLO

)
(ε−1
∞ − ε−1

0 ) (5)

r0 =
(

h̄

2m∗ωLO

)1/2

(6)
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whereα is the electron–phonon coupling constant andωLO is the longitudinal optical phonon
frequency (taken asωLO = 1 in equations (2) and (3)).m∗ is the electron effective mass
andε∞ andε0 are the high-frequency and static dielectric constants, respectively.r0 is the
unit of length and is a measure of the polaron radius.

Starting from this Hamiltonian, a Green’s function equation-of-motion approach in the
framework of the Fock approximation of Matz and Burkey is used to obtain the ground-
state energy [9]. The theory is valid at zero temperature and, not being perturbative, for
any coupling or confining strength. A non-linear effective Schrödinger equation is derived
in which the ground state is approached via a complete set of eigenstates. We then obtain
from this equation an upper bound for the polaron ground-state energy(E0) in terms of a
variational model spectrum,{9n(r)}:
E0 =

∫
9∗0(r)H090(r) d3r +

∑
n

∑
k

|Vk|2
∫

eik·(r−r′) 9n(r)9
∗
n(r
′)

E0− En − 1
90(r

′)9∗0(r) d3r d3r ′

(7)

wherek is the 3D phonon wave vector, andr the 3D electron position. For the confinement
potential (V (r)), we choose an anisotropic harmonic potential, with spring constant� along
the directionsx andy, andK along thez-axis:

V (r) = �4ρ2+K4z2 (8)

where

ρ2 = x2+ y2. (9)

Thus, we can describe a 3D polaron (� = K = 0), a 2D polaron (� = 0 andK →∞), a
1D polaron (�→∞ andK = 0), and a polaron in a quantum dot (� andK 6= 0). For the
model potential, we use an anisotropic harmonic potential, with variational spring constants
β andγ :

Hm = p̂2+ β4ρ2+ γ 4z2. (10)

Its eigenvalues and eigenfunctions are well known. This Hamiltonian is used to generate
the variational spectrumψn(r) used in equation (7).

The complete spectrum summation is done using the Slater sum rule [10]. After
integration, we find the ground-state energy:

E0 = β2+ γ
2

2
+ �

4

β2
+ K4

2γ 2
−
√

2

π
αF (11)

whereF is given by

F = γ
∫ ∞

0
dt

e−t√
1− e−2γ 2t

tan−1√ξ√
ξ

for γ > β (12)

or by

F = γ
∫ ∞

0
dt

e−t√
1− e−2γ 2t

tanh−1√−ξ√−ξ for γ 6 β. (13)

In these equations,ξ is given by

ξ = γ 2(1− e−2β2t )

β2(1− e−2γ 2t )
− 1. (14)

β and γ are determined by minimizingE0. Equation (11) reduces to the energy found
by Yıldırım and Erc¸elebi who studied the same anisotropic harmonic confining potential in
the weak-coupling [5] and strong-coupling limits [6]. Our result is however valid for any
strength of electron–phonon coupling.



1498 Y Lépine and G Bruneau

3. Asymptotic limits

At this stage, it is of interest to study the asymptotic limits of equation (11). This is
done for the cases of strong (α � 1) and weak (α � 1) coupling and for both isotropic
and anisotropic confining potentials. In the following, the different limits refer to the
dimensionality of the polaron. More precisely, the 1D limit refers to a 2D confinement. The
2D limit refers to a 1D confinement and the 3D limit refers to the absence of confinement.

3.1. The isotropic limit

In the isotropic case,� = K. The energy minimization givesβ = γ . In the strong-
coupling limit (α or K � 1), the electron wavefunction is strongly localized andβ � 1.
The ground-state energy then reduces to

E0 = 3β2

2
+ 3K4

2β2
−
√

2

π
αβ. (15)

This equation has to be minimized with respect toβ. If the effect of confinement is much
stronger than that of polarization (K � α), we find that the energy is that of the 3D
harmonic oscillator, lowered by a correction linear inα, due to a static lattice polarization
around the average position of the electron:

E0 = 3K2−
√

2

π
αK. (16)

However, if the confinement effects are smaller than the polarization effects (K � α), the
ground-state energy is that of a self-trapped 3D polaron in the strong-coupling limit [2, 9],
corrected by the harmonic potential energy associated with an electron located at an average
distance determined by the self-trapping radius:

E0 = − α
2

3π
+ 27πK4

4α2
. (17)

If the electron–phonon coupling strength is weak (α � 1), and in the limit of strong
confining potentials (K � 1), we find that the ground-state energy of the system is given by
equation (16): it corresponds to an harmonic oscillator with a small polarization correction.
In the low-confinement limit (α andK � 1), the ground-state corresponds to a polaron
bound in a harmonic potential. Two corrections are present: a self-energy shift (−α) and
an effective-mass correction

E0 = −α + 3K2

√
m∗

(18)

with
√
m∗ = 1

1− α/12
(19)

or

m∗ ≈ 1

1− α/6. (20)

This expression corresponds to a 3D Fröhlich polaron bound to a harmonic potential, as
studied using second-order perturbation theory [1, 5]. Note that for all of these isotropic
limits the effect of large confinements is to increase the self-energy of the polaron (defined
as the ground-state energy minus the elastic energy (E0− 3K2)).
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3.2. The 1D limit: 2D confinement (�� K)

In the anisotropic case (� 6= K) the minimization givesβ 6= γ . In the following, we
consider two limiting cases: the 2D confinement (� � K) and the 1D confinement
(� � K). For the 2D confinement, i.e. when� � K, the polaron has a one-dimensional
character. It is well known that the one-dimensional Fröhlich ground-state energy diverges
in the absence of a phonon Debye cut-off. Consequently, we expect this energy to diverge
when� increases. A consequence of this divergence is that the polaron self-energy increases
rapidly with the two-dimensional confinement.

We first study the strong-coupling case (α � 1). For�� α � K, we obtain

E0 = 2�2− α
2 ln2(�)

π
. (21)

This is the 2D harmonic energy to which is added a self-energy correction that reflects the
lattice polarization induced by the oscillating electron. This energy diverges logarithmically
with � as it should for a 1D limit. For�� K � α, we find

E0 = 2�2+K2− αK
√

2

π
ln(2�/K). (22)

This is the harmonic energy with a perturbative polarization correction. Note again the
logarithmic behaviour of the polarization correction.

For weak coupling (α andK � 1 and�� 1), we find

E0 = 2�2+K2− 3

2
α ln 2− α ln�+ α

2

√
πγEuler. (23)

In this limit, the correction due to the lattice polarization is linear inα and diverges in the
1D limit (�� K) as it should.

3.3. The 2D limit: 1D confinement (K � �)

This is the limit whenK � �. As the electron is confined in one direction, the polaron
has a 2D character. We first consider the strong-coupling limit (α � 1). ForK � �� α,
we obtain

E0 = K2+ 2�2− α�
√
π

2
. (24)

This is the harmonic energy to which a polarization term adjusted to the average position
of the electron is added. ForK � α � �, we obtain

E0 = K2− α
2π

8
+ 8�4

πα2
. (25)

The first term of this equation is the 1D harmonic energy while the second term is the
self-energy of a strong-coupling 2D Fröhlich polaron [6, 11]. The last term is a correction
to these energies, due to the smaller harmonic coupling in thexy-plane.

For the weak-coupling limit (α and�� 1 andK � 1), we find

E0 = K2− π
2
α + 2�2

√
m∗

(26)

m∗ = 1

(1− πα/8) . (27)

The first term of this expression is the elastic energy of an electron in a 1D harmonic
potential. The second term is simply the self-energy of a 2D polaron [2] while the last
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term corresponds to the elastic energy of a 2D polaron bound to a harmonic potential. Note
that the effective mass has been renormalized to the 2D polaron effective mass [11]. This
result was previously found by Yıldırım and Erc¸elebi [5] using perturbation theory and by
Thilagam and Singh [12] who used a variational approach.

4. Numerical calculations

In order to obtain some idea of the effects of the confinement on the polaron self-
energy over the whole range of confinement strength, we compute the ground-state energy
(E0) from equations (12) and (13), after a minimization with respect toβ and γ . We
then plot the resulting polaron self-energy (Ep), i.e. E0 minus the confinement potential
(E0 − K2 − 2�2), as a function of the different parameters. A useful parameter is the
confinement length defined as the root mean square position of the electron resulting from
the harmonic confinement alone. It is

Lz = 〈z2〉1/2 = 1/(
√

2K) (28)

for the z-direction and

Lρ = 〈ρ2〉1/2 = 1/� (29)

for the radial direction. In the present system of units, the polaron quantum radius is equal
to one. We thus expect the effect of confinement to be more important whenLz or Lρ
becomes smaller than 1.

Figure 1. The self-energy of the polaron (E0 − K2 − 2�2) as a function ofLz, for Lρ = 2.0
(� = 0.5) andα = 0.5, 1.0 and 2.0.

In figure 1, we plot the polaron self-energy (Ep) as a function ofLz, keeping� equal
to a constant value (0.5) orLρ = 2.0, a value for which the confinement length is twice the
size of the polaron radius. For large values ofLz, we have an anisotropic 3D polaron, while,
asLz decreases, the polaron increases its localization in thez-direction. Asymptotically,
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we get a two-dimensional polaron. We observe that the absolute value of the self-energy
increases sharply as the anisotropy is increased through the increase of the confinement,
up to its finite asymptotic 2D limit whenLz goes to zero. This enhancement of the self-
energy is important only when the confinement length becomes smaller than the polaron
radius (Lz < 1). We find the same overall behaviour at different electron–phonon coupling
strengths. The effect of 1D confinement is thus to enhance the effect of electron–phonon
interaction.

Figure 2. The self-energy of the polaron (E0 − K2 − 2�2) as a function ofLρ , for Lz = 2.0
(K = 0.35) andα = 0.5, 1.0 and 2.0.

In figure 2, we look at the effect of a 2D confinement. We plot the polaron self-energy
(Ep) as a function ofLρ , keepingK equal to a constant value (0.35) orLz = 2.0. This
value is such that the confinement length is twice the polaron radius. For large values of
Lρ , we have an anisotropic 3D polaron, while for small values of the confinement length,
we asymptotically have a 1D polaron. The confinement length is then smaller than the
polaron radius (Lρ < 1). We observe that, as the confinement increases in thexy-plane,
the absolute value of the polaron self-energy increases rapidly asLρ decreases, with the
expected logarithmic divergence for strong confinement. This behaviour is enhanced as the
electron–phonon coupling strength increases. The effect of a 2D confinement is thus to
dramatically increase the effect of the electron–phonon interaction.

We have also plotted, in figure 3, the polaron self-energy as a function of the coupling
parameterα, for different strengths of the 2D confining potential (� = 1.0 (Lρ = 1.0),
� = 5.0 (Lρ = 0.2) and� = 10.0 (Lρ = 0.1)), keepingK equal to 1.0 (Lz = 0.71). For
small coupling, the self-energy goes to zero as it should. As the coupling increases, we
observe a rapid increase in the polaron self-energy. This increase is proportionally larger
for a larger confinement because we then approach the 1D limit. This confirms again the
idea that a confinement increases the self-energy of the polaron and that the effect is larger
for a higher degree of anisotropy.
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Figure 3. The self-energy of the polaron (E0−K2− 2�2) as a function ofα, for K = 1.0 and
� = 1.0, 5.0 and 10.0.

5. Conclusion

In this paper, we have obtained an analytical variational expression for the ground-state
energy of a Fr̈ohlich polaron confined in an anisotropic parabolic well. This expression
is valid for any coupling strength or any degree of confinement, in the framework of the
Fröhlich Hamiltonian. The different asymptotic limits of our result permit us to reproduce
the expressions found by other authors for small or large electron–phonon coupling and for
different degrees of confinement. Our treatment unifies these results and describes the cases
intermediate between the limiting cases. It also allows the investigation of the effect of an
anisotropic confinement.

We have found that a confinement increases the self-energy of the polaron and that
an anisotropic confinement is more effective in producing that effect than an isotropic
confinement. In particular, a two-dimensional confinement leading to a one-dimensional
polaron increases the self-energy logarithmically while a one-dimensional confinement
leading to a two-dimensional polaron leads to an increased constant self-energy. This
increase can be associated with a reduction of the electron phase space, an effect similar to
the localization induced in the strong-coupling regime.

It is of interest to note the analogy between the harmonic two-dimensional confinement
and the electron localization resulting from the application of a magnetic field. In the
strong-field regime, the electron behaves as a one-dimensional polaron with the associated
logarithmic divergence in the self-energy [13]. The physical picture is then the same as
in the present model. This can be seen easily by comparing equations (23)–(29) with
the corresponding equations of reference [13] which treats the bulk polaron in a constant
magnetic field in the framework of the Fock approximation. The addition of a magnetic
field to the present model would be of interest in the study of cyclotron resonance in
quantum dots.

To summarize, we have shown that the effect of an anisotropic harmonic confinement
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was to increase the self-energy of the polaron. This increase is important when the
confinement length becomes smaller than the polaron radius as shown from numerical
calculations. It is also more important for a two-dimensional confinement than for a one-
dimensional one. In this context, it is important to note that when the confinement length
becomes of the order of the lattice parameter (this can be the case for a high magnetic field),
the Fr̈ohlich Hamiltonian is no longer valid, and that corrections to the effective mass and
to the continuum dielectric approximation must be taken into account.
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